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Domain-size control by global feedback in bistable systems
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We study domain structures in bistable systems such as the Ginzburg-Landau equation. The size of domains
can be controlled by a global negative feedback. The domain-size control is applied for a localized spiral

pattern.
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Spatially localized states have been observed experimen- au 52U
tally in binary fluid mixtures[1], in electroconvection in —=u—ul-K{(uy—c)+ — (3

at 07)(2 '

nematic liquid crystal§2], and in granular media undergoing
the Faraday instability3]. Some simple model equations . . .

have been studied to understand the mechanism of the Iocé’f’-here the th_|rd term on the ”gh"hf’?”d side represents the
ized states found in dissipative systems. Solitonlike Iocalizeé’IObaI negative feedback. If the third termK((u)—c)
states have been found in the quintic complex Ginzburgz"’Ikes a small con'st.qnt vallb'althere are two st'able states
Landau equation and the coupled complex Ginzburg-Landa earu~ t_l. If the initial cqndltlon takes a dom_aln structure,
equationg4,5]. Wormlike localized states were studied with the domain v_vaII moves .W'th a con_stant velocity for nonzero
the anisotropic complex Ginzburg-Landau equation coupled’ T_he dor_n_alns of p03|_t|v(aor negative u.become ks
with a scalar modé6]. A self-trapping mechanism works for i 'b is positive(or neg.atlvé. In our negative feedback model
localized states in the quintic Swift-Hohenberg equafish ~ With K=0, the effective control parameterK((u) —c) de-
Long-range inhibition is important for localized states in Cré@Sesincreasepas the domain size of positiveegative
some reaction diffusion equatiori8]. On the other hand, Y '"creases. Finally{u)=c is attained and the domain
controlling chaotic dynamics has been investigated with th@"OWth stops. Then, the size of the domainwt =1 is
Ott-Grebugi-Yorke method and the feedback metf@ad0]. ~ aPproximately (I=c)L/2, namely, the parameter deter-
Zykov et al. studied the control of spiral waves in a spatially Mines the domain size. We can control the domain size by

extended system by global feedbddi]. changing the parameter Figures 1a) and Xb) display the
We study the control of the domain size of localized do-
mains in spatially extended bistable systems. Our first model @
equation is based on the Ginzburg-Landau equation coupled 400 —
with an inhibitory medium: \
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whereu obeys the Ginzburg-Landau equatiengenotes the X
inhibitory variable,D is the diffusion constant af, 7 is the (b)
time constant o, andc is a parameter betweenl and 1.
This model equation is a reaction diffusion equation. The 400 / \
I 1

system size id. and the periodic boundary condition or the 300-

no-flux boundary condition is assumed.Df is sufficiently / \
large, a localized state is obtained ag8h If D is infinitely ~ aod 7 $
large, v is wuniform for O<x<L, that is, v=(v) —— -

=(1/L)f5vdx. The second equation in E€}) is reduced to 1004 f—

——————\———
d{v) 0 T\
Tt = (W)+K(u—o), 2 0 5 100 150 200

where (u)= (1/L) fgudx. If the a_dia_batic ap.proxim.atio_n is FIG. 1. (8 Time evolution of u(x,t) by Eqg. (1) at 7=1,
assumed{v)=K({u)—c). Substitution of this relation into K=0.5,¢c=—-0.2, D=10000, and_=200. (b) Time evolution of
the first equation of Eq1) yields u(x,t) by Eqg.(3) atk=0.5,c=—0.2, andL = 200.
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FIG. 2. Final stationary state for Ed5) at K;=K,=0.5, a

c;=—-0.1,¢,=0, andL=200. FIG. 3. Velocityv of the domain wall as a function affor Eq.
(6) atc,=0.4.

time evolution of the domain structure it=0.5,c=—-0.2,

and L=200. The initial condition isu(x)=1 for 98<x  y~—/3/2, 0, andy/3/2. If the domain sizes are denoted as
<102 andu=—1 for x<98 andx>102. The numerical | _ |, andl_, respectively, for the three domains of
simulation was performed with the pseudospectral method of J3/2, 0, and—/3/2, the domain sizes satisfy approxi-
mode number 1024 and time step 0.01. Figu® dlisplays mately (u)=3/2(1, —1 _)/L=c,=—0.1 and(u?)=3/4( ,

the time evolution for Eq(l) with D=10000 andr=1. A +|,)/L:3/(16<2)+C2:3/8. The eXpeCted domain sizes
localized state with size 75.7 is obtained. The domain size i§ 4| ,=38.4,1,=100, andl _=61.6 for the parameters,

calculated as the width of the region of>0. Figure 1b) ——0.1,c,=0, andL = 200. The numerical result is approxi-
displays the time evolution by the Ginzburg-Landau equatior}mltely |’+~39’7 l,~97.5, andl_~62.7. The global feed-

(3) with global negative feedback. A domain with a fixed p 5 “scceeds in domain-size control for this quintic
size is obtained as a stationary state. The final size of th%inzburg-Landau system.

domainu=1 is 80. Since the diffusion constabt=10 000 The same method is applicable for nonvariational sys-

in Eq. (1) is very large, the time evolution obtained by EQ. tgms e use the quintic complex Ginzburg-Landau equa-
(1) is close to that of Eq(3). The domain size is well ap- ..

proximated at the value (fc)L/2=80.

We can control the domain size even if the system has W
three stable states. The model equation is the quintic — =—aW+ (1+icy)|W2W— |W[*W+ —,  (6)
Ginzburg-Landau equation: ot ax

au s s J°u where W is a complex variable and, is a nonvariational
op o autut-u +e+ﬁ, (4 parameter. There are two stable uniform staws:0 and
W=Wgexplwgt), where Woz\/(1+:]1—4a)/2 and wg
wherea ande are parameters. 6=0 anda=3/16, the po- =C2(1++y1—4a)/2. There exists a domain wall that con-

tential energyJ = au?/2— u*/4+ u®/6— eutakes the same lo- hects the zero state and the oscillating state. Figure 3 dis-
cal minimum value 0 au=0 and =+/3/2. Two kinds of Plays the numerically obtained velocity of the domain wall
domain wall, which connect \3/2 and 0 and 0 ang3/2, @S @ function offa for c2=Q.4. The positive velocity implies _
do not move at the parametegs-0 anda=3/16. For the that the osu_llatmg _state invades the zero state. The velocity
other parameter values, the domain walls have finite velociof the domain wall is 0 aa=a.~0.0678. The model equa-
ties. We assume a model with global negative feedback astion With global feedback is

au d%u Ww_ i 20— IWI4W— 2
E:u3—u5—K1(<u>—cl)—K2(<u2>—cz)u+ Pl at AW (1-+ico) [WIW=[WIW = K(IWHW
(5) AW
+—, )
where (u)=(1/L) f§udx, (u?)=(1/L)f5u?dx, and KK, ax?

are coupling constants amg,c, are the control parameters

that determine the domain sizes. Since the parameter valyghere K denotes the feedback strength ar¢w|?)
(a,e)=(0,0) in Eq.(4) is a codimension-2 point, we need =(1/L)§|W|?dx. Figure 4 displays the time evolution of
two types of negative feedback. If the negative feedback sudw| for a=0.01,L =400, c,=0.4, andK=0.12. The initial
ceeds, the final state satisfiég)=c, and K,((u?)—c,)  condition is R&/(x)=1 and ImMN/(x)=0 for 196<x<204,
=3/16. We have performed a numerical simulation For andW(x)=0 for x<<196 andx>204. The domain sizk of
=200 under the no-flux boundary condition. The initial con-the oscillating state is calculated by the relatian
dition is u(x) = — 1+ 2x/L. Figure 2 displays the final state +K(|W|?)~a+K|W,|?l/L~a., where|W;|~0.866 is the

in the time evolution by Eq.(5) at K;=0.5, K,=0.5, amplitude of the oscillating state coexisting with the zero
c,=-—0.1, and c,=0. There appear three domains of state ata=a, for Eq. (6). The estimated value k=L (a,
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FIG. 4. Time evolution ofW| for Eq. (7) ata=0.01,c,=0.4,
K=0.12, andL=400.

FIG. 5. Three-dimensional plot of Ré for a localized spiral
pattern as a result of the time evolution via E8) at a=—0.05,
c,=0.4,K=0.4, andL = 200.

—a)/(K|W,|?)~256.8. The numerically obtained size is ap-
proximately 257. We can control the domain size by chang
ing the parametea or K.

We have performed a simulation of the two-dimensionalpattern. The value ofa+K(|W|?) is approximately
quintic complex Ginzburg-Landau equation with global —(0.0648 for the stationary localized spiral, and the value is
feedback: close toa., but slightly larger. This probably is due to the

surface tension effect. Recently, a localized spiral pattern

oW : 2 4 2 was studied with the quintic complex Ginzburg-Landau
W__aw+(1+'C2)|W| W [WPW=K( W[5 wW equation without the global feedback tefrh2]. However,
the localization mechanism is different. In our model, the
+V2W, (8 domain size of the spiral pattern can be controlled by the
) paramete@ or K.
where K denotes the feedback strength ar¢\W|®) To summarize, we have studied the control of the domain

=(1L?)[5fc|W|>dxdy. The parameters areL=200, sjze for Ginzburg-Landau type equations with global nega-
a=—0.05,c,=0.4, andK=0.4. The numerical simulation tive feedback. The domain-size control by global negative
was performed with the psudospectral method of modgeedback is one of the simplest examples of control for spa-
number 25& 256 and time step 0.005. The initial condition tjally extended dynamical systems. The domain size is deter-
was R&V(x,y)=0.0033k—L/2)(rq—r) and IMN(X,y)  mined by the condition that the velocity of the domain wall
=0.0033(/—L/2)(rq—r)  for r<ry where r s zero. The global negative feedback can be derived from
=\(x—L/2)*+(y—L/2)? and rq=55, and W=0 for r  the coupled reaction diffusion equation. In the crystal growth
>rq4. That is, a topological defect is set at the centery] problem, the temperature field plays the role of the inhibitory
=(L/2,L/2) as an initial condition. A spiral pattern evolves medium through the latent heat released at solidification. The
from the initial condition. The spiral pattern occupies only aglobal negative feedback appears more naturally in electric
finite domain because of global feedback. Figure 5 displays aircuits[13]. The control of the domain size is fairly robust
three-dimensional plot of RE(x,y) for the localized spiral and may be applicable for many systems.
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