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Domain-size control by global feedback in bistable systems
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We study domain structures in bistable systems such as the Ginzburg-Landau equation. The size of domains
can be controlled by a global negative feedback. The domain-size control is applied for a localized spiral
pattern.
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Spatially localized states have been observed experim
tally in binary fluid mixtures@1#, in electroconvection in
nematic liquid crystals@2#, and in granular media undergoin
the Faraday instability@3#. Some simple model equation
have been studied to understand the mechanism of the lo
ized states found in dissipative systems. Solitonlike locali
states have been found in the quintic complex Ginzbu
Landau equation and the coupled complex Ginzburg-Lan
equations@4,5#. Wormlike localized states were studied wi
the anisotropic complex Ginzburg-Landau equation coup
with a scalar mode@6#. A self-trapping mechanism works fo
localized states in the quintic Swift-Hohenberg equation@7#.
Long-range inhibition is important for localized states
some reaction diffusion equations@8#. On the other hand
controlling chaotic dynamics has been investigated with
Ott-Grebugi-Yorke method and the feedback method@9,10#.
Zykov et al. studied the control of spiral waves in a spatia
extended system by global feedback@11#.

We study the control of the domain size of localized d
mains in spatially extended bistable systems. Our first mo
equation is based on the Ginzburg-Landau equation cou
with an inhibitory medium:
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52v1K~u2c!1D
]2v

]x2
, ~1!

whereu obeys the Ginzburg-Landau equation,v denotes the
inhibitory variable,D is the diffusion constant ofv, t is the
time constant ofv, andc is a parameter between21 and 1.
This model equation is a reaction diffusion equation. T
system size isL and the periodic boundary condition or th
no-flux boundary condition is assumed. IfD is sufficiently
large, a localized state is obtained as in@8#. If D is infinitely
large, v is uniform for 0,x,L, that is, v5^v&
5(1/L)*0

Lvdx. The second equation in Eq.~1! is reduced to

t
d^v&
dt

52^v&1K~^u&2c!, ~2!

where ^u&5(1/L)*0
Ludx. If the adiabatic approximation is

assumed,̂v&5K(^u&2c). Substitution of this relation into
the first equation of Eq.~1! yields
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where the third term on the right-hand side represents
global negative feedback. If the third term2K(^u&2c)
takes a small constant valueb, there are two stable state
nearu;61. If the initial condition takes a domain structur
the domain wall moves with a constant velocity for nonze
b. The domains of positive~or negative! u become dominant
if b is positive~or negative!. In our negative feedback mode
with K.0, the effective control parameter2K(^u&2c) de-
creases~increases! as the domain size of positive~negative!
u increases. Finally,̂ u&5c is attained and the domai
growth stops. Then, the size of the domain ofu561 is
approximately (16c)L/2, namely, the parameterc deter-
mines the domain size. We can control the domain size
changing the parameterc. Figures 1~a! and 1~b! display the

FIG. 1. ~a! Time evolution of u(x,t) by Eq. ~1! at t51,
K50.5, c520.2, D510 000, andL5200. ~b! Time evolution of
u(x,t) by Eq. ~3! at K50.5, c520.2, andL5200.
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time evolution of the domain structure atK50.5, c520.2,
and L5200. The initial condition isu(x)51 for 98,x
,102 andu521 for x,98 and x.102. The numerical
simulation was performed with the pseudospectral metho
mode number 1024 and time step 0.01. Figure 1~a! displays
the time evolution for Eq.~1! with D510 000 andt51. A
localized state with size 75.7 is obtained. The domain siz
calculated as the width of the region ofu.0. Figure 1~b!
displays the time evolution by the Ginzburg-Landau equat
~3! with global negative feedback. A domain with a fixe
size is obtained as a stationary state. The final size of
domainu51 is 80. Since the diffusion constantD510 000
in Eq. ~1! is very large, the time evolution obtained by E
~1! is close to that of Eq.~3!. The domain size is well ap
proximated at the value (11c)L/2580.

We can control the domain size even if the system
three stable states. The model equation is the qui
Ginzburg-Landau equation:

]u

]t
52au1u32u51e1

]2u

]x2
, ~4!

wherea ande are parameters. Ife50 anda53/16, the po-
tential energyU5au2/22u4/41u6/62eu takes the same lo
cal minimum value 0 atu50 and 6A3/2. Two kinds of
domain wall, which connect2A3/2 and 0 and 0 andA3/2,
do not move at the parameterse50 anda53/16. For the
other parameter values, the domain walls have finite vel
ties. We assume a model with global negative feedback

]u

]t
5u32u52K1~^u&2c1!2K2~^u2&2c2!u1

]2u

]x2
,

~5!

where ^u&5(1/L)*0
Ludx, ^u2&5(1/L)*0

Lu2dx, and K1 ,K2

are coupling constants andc1 ,c2 are the control parameter
that determine the domain sizes. Since the parameter v
(a,e)5(0,0) in Eq. ~4! is a codimension-2 point, we nee
two types of negative feedback. If the negative feedback s
ceeds, the final state satisfies^u&5c1 and K2(^u2&2c2)
53/16. We have performed a numerical simulation forL
5200 under the no-flux boundary condition. The initial co
dition is u(x)52112x/L. Figure 2 displays the final stat
in the time evolution by Eq.~5! at K150.5, K250.5,
c1520.1, and c250. There appear three domains

FIG. 2. Final stationary state for Eq.~5! at K15K250.5,
c1520.1, c250, andL5200.
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u;2A3/2, 0, andA3/2. If the domain sizes are denoted
l 1 , l 0, and l 2 , respectively, for the three domains ofu
5A3/2, 0, and2A3/2, the domain sizes satisfy approx
mately ^u&5A3/2(l 12 l 2)/L5c1520.1 and^u2&53/4(l 1

1 l 2)/L53/(16K2)1c253/8. The expected domain size
are l 1538.4, l 05100, andl 2561.6 for the parametersc1
520.1,c250, andL5200. The numerical result is approx
mately l 1;39.7, l 0;97.5, andl 2;62.7. The global feed-
back succeeds in domain-size control for this quin
Ginzburg-Landau system.

The same method is applicable for nonvariational s
tems. We use the quintic complex Ginzburg-Landau eq
tion:

]W

]t
52aW1~11 ic2!uWu2W2uWu4W1

]2W

]x2
, ~6!

where W is a complex variable andc2 is a nonvariational
parameter. There are two stable uniform states:W50 and
W5W0exp(iv0t), where W05A(11A124a)/2 and v0

5c2(11A124a)/2. There exists a domain wall that con
nects the zero state and the oscillating state. Figure 3
plays the numerically obtained velocity of the domain w
as a function ofa for c250.4. The positive velocity implies
that the oscillating state invades the zero state. The velo
of the domain wall is 0 ata5ac;0.0678. The model equa
tion with global feedback is

]W

]t
52aW1~11 ic2!uWu2W2uWu4W2K^uWu2&W

1
]2W

]x2
, ~7!

where K denotes the feedback strength and^uWu2&
5(1/L)*0

LuWu2dx. Figure 4 displays the time evolution o
uWu for a50.01,L5400, c250.4, andK50.12. The initial
condition is ReW(x)51 and ImW(x)50 for 196,x,204,
andW(x)50 for x,196 andx.204. The domain sizel of
the oscillating state is calculated by the relationa
1K^uWu2&;a1KuW1u2l /L;ac , where uW1u;0.866 is the
amplitude of the oscillating state coexisting with the ze
state ata5ac for Eq. ~6!. The estimated value isl 5L(ac

FIG. 3. Velocityv of the domain wall as a function ofa for Eq.
~6! at c250.4.
1-2



p-
ng

na
a

d
n

s
a

ys

is
e
ern
au

he
the

ain
ga-
ive
pa-
ter-
all
om
th
ry

The
tric
t

BRIEF REPORTS PHYSICAL REVIEW E 64 047101
2a)/(KuW1u2);256.8. The numerically obtained size is a
proximately 257. We can control the domain size by cha
ing the parametera or K.

We have performed a simulation of the two-dimensio
quintic complex Ginzburg-Landau equation with glob
feedback:

]W

]t
52aW1~11 ic2!uWu2W2uWu4W2K^uWu2&W

1¹2W, ~8!

where K denotes the feedback strength and^uWu2&
5(1/L2)*0

L*0
LuWu2dxdy. The parameters areL5200,

a520.05, c250.4, andK50.4. The numerical simulation
was performed with the psudospectral method of mo
number 2563256 and time step 0.005. The initial conditio
was ReW(x,y)50.0033(x2L/2)(r d2r ) and ImW(x,y)
50.0033(y2L/2)(r d2r ) for r ,r d where r
5A(x2L/2)21(y2L/2)2 and r d555, and W50 for r
.r d . That is, a topological defect is set at the center (x,y)
5(L/2,L/2) as an initial condition. A spiral pattern evolve
from the initial condition. The spiral pattern occupies only
finite domain because of global feedback. Figure 5 displa
three-dimensional plot of ReW(x,y) for the localized spiral

FIG. 4. Time evolution ofuWu for Eq. ~7! at a50.01,c250.4,
K50.12, andL5400.
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pattern. The value of a1K^uWu2& is approximately
20.0648 for the stationary localized spiral, and the value
close toac , but slightly larger. This probably is due to th
surface tension effect. Recently, a localized spiral patt
was studied with the quintic complex Ginzburg-Land
equation without the global feedback term@12#. However,
the localization mechanism is different. In our model, t
domain size of the spiral pattern can be controlled by
parametera or K.

To summarize, we have studied the control of the dom
size for Ginzburg-Landau type equations with global ne
tive feedback. The domain-size control by global negat
feedback is one of the simplest examples of control for s
tially extended dynamical systems. The domain size is de
mined by the condition that the velocity of the domain w
is zero. The global negative feedback can be derived fr
the coupled reaction diffusion equation. In the crystal grow
problem, the temperature field plays the role of the inhibito
medium through the latent heat released at solidification.
global negative feedback appears more naturally in elec
circuits @13#. The control of the domain size is fairly robus
and may be applicable for many systems.

FIG. 5. Three-dimensional plot of ReW for a localized spiral
pattern as a result of the time evolution via Eq.~8! at a520.05,
c250.4, K50.4, andL5200.
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